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The density functions analysis ofrzandRr”
In misspecified linear regression models

Dr. Mahmoud Farouk EIl-Said

Abstract
In this paper we analyze the density functions of R2?and
the adjusted R?( ) when there are two types of

misspecification. The first is exclusion of relevant variables and
the other is inclusion of irrelevant variables. It is shown
numerically that both R? and R’ tends to underestimate when
there are omitted variables, and both tend to overestimate when
there are irrelevant variables.

Introduction:

In applied econometric anaIyS|s using regression, the coeff|C|ent
of determination (say, R?) and the 'adjusted’ R? (say,R ) are
usually reported in the results. Several theoretical analyses have
consequently been performed on R?and R® For example, Barten
[1] suggests a modified version of R?to reduce its bias. Press
and Zellner [8] discuss the reason why the study of R?in the case
of fixed regressors is important in econometrics, and perform
Bayesian analysis of R?. Cramer [4] derives the exact first two
moments of R?and Rz, and shows thatR?is seriously biased
upward in small samples, and thatR’is more unreliable
thanR%in terms of standard deviation, though the bias is
relatively small. In practlcal sﬂugtlons the model is often
misspecified. Although R%*and R” are usually used as the
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measures of goodness of fit of the estimated model, studies of
their small-sample properties are few when the model is
misspecified. Some exceptions are Carrodus and Giles [3],
Ohtani [6] and Ohtani and Hasegawa [7]. Carrodus and Giles [3]
derive the distribution function of R?when the error terms follow
an AR(1) or MA(1) process. Ohtani [6] examines the bias and the
mean squared error (MSE) of R%and an 'improved’ R?when
there are omitted variables. (The ‘improved’ RZ%is obtained by
replacing the ordinary least squares estimator of regression
coefficients in the usual R?by the so-called Stein rule estimator.)
He shows that when the magnitude of specification error is large,
both the bias and MSE of the 'improved' R?can be larger than
those of the usual R?. Ohtani and Hasegawa [7] examine the bias
and MSE of R2andR”when proxy variables are used instead of
unobservable variables and when the error terms have the normal
and the multivariate t distributions._'zrhey show that if the
unobservable variables are important, R can be more unreliable
than R2in small samples in terms of both bias and MSE.

Exclusion relevant variables

Model and estimators:

Suppose that the correct model is

y =B, + X B, +X,B, +¢ e~N@©Oc) (1)
Where:

y . an nxlvector of observations, and it represents dependent
variable.

/:an nxlvector of ones.
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X1 :an nxkymatrix of none stochastic independent variables.
Xy :an nx Kk, matrix of none stochastic independent variables.
Lo : an intercept of regression line.

i an kg x1vector of coefficients.

P2 an kp x1vector of coefficients.

¢ an nxlvector of normal error terms.

We assume that all independent variables are measures as
deviations from their sample mean, X1 and X, are of full rank.

The model is more compactly written as
y=L(5,+XB + L (2)

When the researcher omits variables X, mistakenly, the model is
misspecified as

y={0,+XB,+n where n=X_pB,+e ... 3)

The ordinary least squares estimators of Spand #; based on the
misspecified model (3) are

b=y 4)
b, =S, X'y where S, =X'X, ... (5)

Since the model to be estimated is misspecified as in (3), R? is
defined as

RZ = bl';lllbsllj-bell'el where e =y- ([y + xlbl) ....... (6)

Since the parent coefficient of determination is defined based on
the true model given in (2), it is defined as

A (7)
B'X* X°B* +no?
Cramer [1987], if we take the probability limit of R?when there
IS no specification error, it reduces to @.
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The density function:

The adjusted R is defined as
D2 - 2 ky
R? = [n_kll_1 ]R _ [n—k,—l] ......... (t))]

We define the following formally general estimator:

R?=hR*+(1-h)  where h>1  and (1-h)<RZ <1 ... )
where:
R*=R*> when h=1 and R =R*  when h= n_",;ll_l

Since R* can have any value between (1-h) and (1), therefore
R* can be negative if

R:g M

n-1
The probability density function of R*? when there is
specification error is deﬁned as the following: Ohtani [2001]

p(R*?) = Zofo;f'(“fwf_(fj’)h‘ ’“"(R'2 =) T k)T o)
_j._

Where:

p()is the density function of R*?.

~ A DAy 12)
Wi(ﬁl)IeXp( li!)(l )

BUX XS xi'x g
0_2
ﬂo,X.,M]XQﬂo
0_2

and M1 = I,, —Z—W—X1S11_1X1'
n

where A =

~22/2) (A 12)!
wj(lz):eXp( 2j!)( 2/2)

where A =

=K Vo=n—k —1 B3 +i,%2 + j) is beta function.
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Numerical results:

¢ When there is not speC|f|cat|on error (A, =0), Figure (1) and
Figure (2) show thatR%and R R’ have upward biases, the upward
bias of RZis larger than that ofR However, the variance
of R%is smaller than that of R’

e When there is not specification errog (A2 =0), Figure (3)
shows that R? has upward biases and R”has downward biases,
the upward bias of RZis Iarger than downward blas ofR2
However, the variance of R?is smaller than that of R

e When there is specification error (A, =10), Figure (4) and
Figure (5) show thatR%and R”have downward biases, the
downward bias of RZis smaller than that ofﬁz. However, the
variance of R2 is smaller than that of R~ .

e \When there |s specification error (A, =10), Figure (6) shows
that R%and R have downward large biases, the downward bias
of RZis larger than that ofR However, the variance of R?is
smaller than that of R’ The variance of R’is negative, where
the density of Ris negative and zero on intervals [0.15,0.4]
and [0.4, 1] respectively.

e Comparing figures (1) and (4), figures (2) and (5) and figures
(3) and (6) we see that as specification error increases, the
biases of R? and R change the signs from p03|t|ve2 to negative,
the bias of R? becomes smaller than that of R . Since the
variance of RZis smaller than that of R wrespective of
speC|f|cat|on error, therefore the MSE of R?is smaller than that
of R’ as specification error increases.

The all figures, the dashed curve represents the adjusted R?(R’)
and the soled curve represents R?.
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The denisty functions of R? and R? adjusted

The denisty functions
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Figure (1): Density functions of R? and R" for n=20, k =2,
d=0.6and 4, =0

E(R2_)2= 06441; Var(R%) = 00125; E(R’) = 0.6022:
Var(R ) =0.0157

The denisty functions of R Zand R ? adjusted
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Figure (2): Density functions of R* and R* for n=20, k =2,
®=09 and 4, =0
E(R2_)2= 09138: Var(R?) =0.0009; E(R’) = 09036
Var(R )=0.0011
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The denisty functions of R?and R? adjusted
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Figure (3): Density functions of R? and R-for n=20, k =2,
®=03and A, =0

E(RZ_)Z: 03696 Var(R?) =00239; E(R*)=02972:
Var(R") =0.0288
The denisty functions of R?and R? adjusted
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Figure (4): Density functions of R? and R for n=20, k =2,
®=0.6 and 4, =10
E(RZ_)Z: 04433 Var(R?) = 00164; E(R”)=03779:
Var(R“) = 00205
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The denisty functions of R®and R ? adjusted
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Figure (5): Density functions of R2 and R’ for n=20, k =2,
®=09 and 4, =10

E(R2_)2= 08636 Var(R?)=0.0017; E(R") = 08475
Var(R ) =0.0022

The denisty functions of R 2 and R 2 adjusted
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Figure (6): Density functions of R? and R’ forn=20, k =2,
®=0.3and A, =10
E(R2_)2= 00249; Var(R?) = —0.0011; E(R’) = 0.0343:
Var(R) =0.0036
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Inclusion irrelevant variables:

In a quite parallel way to that above, we can drive the density
function of R*2, it is obtained from (10) by replacing V; by 7 |,
Vo by 72, 1 by 14, and Ja2 byo.

+72) z'
p(RQZ) z VW(ﬂlzz)h( H'l)(RoZ h— 1)( +i-1) (1 R.Z) -1)
Where: -
R*®=R? when h=1 and R*=R?  when h= 34—

o =N—k; -k, -1
Z'1=|(1+k2

ko is the number of the irrelevant variables

,u—ﬁl S
yl_ﬂl Sﬂl where A" =(f',0) and S*=X*"X"*

Numerlcal results:

n
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Density function
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R? R?
Figure (7): Density functions of R? and R’ forn =20, k=2,
®=0.6 and ko, =1

E(R) 0.665; Var(R?) =0.0119; E(R) 0.602;
Var(R) 0.0168.
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Figure (8): Density functions of R2 and R’ for n = 20, ky =2
,®=0.6 and kp, =5

E(R2_)2= 0.749: Var(R?) = 0.0093; E(R") = 0.602:
Var(R”) = 00233

e Figure (7) shows the density functions of R2and R for n =
20, k; =2,®=0.6 when specification error is small (k, =1).
We see that both R’and R have upward biases, and the
upward bias of RZis larger than that of R

e Figure (8) shows the density functions of R and R for n =
20, k; =2, ®=0.6 when specification error is relatively
large (ko :5_)2. We see that upward bias of R?is much larger
than '[hg’[2 of R, but the variance of R%is much smaller than
that ofR .
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Concluding remarks:

In this paper, we have analyzed the density functions of R2and

2 .- . .
R when there are two types of specification errors for linear
regression models.

Our numerical results show the following:

1. When the relevant variables are omitted, and when
underestimation is more than oxezzrestimation, RZ%is better
measure of goodness of fit thanR .

2. When irrelevant variables are included, and when
underestimation is more than ove_rezzstimation, R? is better
measure of goodness of fit than '32' When overestimation
IS more than underestimation, R is better measure of
goodness of fit than R?.
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