#### **Dr. Mahmoud Farouk El-Said**

## Abstract

In this paper, we analyze the density functions of  $R^2$  and the adjusted  $R^2(\overline{R}^2)$  when there are two types of misspecification. The first is exclusion of relevant variables and the other is inclusion of irrelevant variables. It is shown numerically that both  $R^2$  and  $\overline{R}^2$  tends to underestimate when there are omitted variables, and both tend to overestimate when there are irrelevant variables.

# **Introduction:**

In applied econometric analysis using regression, the coefficient of determination (say,  $R^2$ ) and the 'adjusted'  $R^2$  (say,  $\overline{R}^2$ ) are usually reported in the results. Several theoretical analyses have consequently been performed on  $R^2$  and  $\overline{R}^2$  For example, Barten [1] suggests a modified version of  $R^2$  to reduce its bias. Press and Zellner [8] discuss the reason why the study of  $R^2$  in the case of fixed regressors is important in econometrics, and perform Bayesian analysis of  $R^2$ . Cramer [4] derives the exact first two moments of  $R^2$  and  $\overline{R}^2$ , and shows that  $R^2$  is seriously biased upward in small samples, and that  $\overline{R}^2$  is more unreliable than  $R^2$  in terms of standard deviation, though the bias is relatively small. In practical situations, the model is often misspecified. Although  $R^2$  and  $\overline{R}^2$  are usually used as the

measures of goodness of fit of the estimated model, studies of their small-sample properties are few when the model is misspecified. Some exceptions are Carrodus and Giles [3], Ohtani [6] and Ohtani and Hasegawa [7]. Carrodus and Giles [3] derive the distribution function of  $R^2$  when the error terms follow an AR(1) or MA(1) process. Obtani [6] examines the bias and the mean squared error (MSE) of  $R^2$  and an 'improved'  $R^2$  when there are omitted variables. (The 'improved'  $R^2$  is obtained by replacing the ordinary least squares estimator of regression coefficients in the usual  $R^2$  by the so-called Stein rule estimator.) He shows that when the magnitude of specification error is large, both the bias and MSE of the 'improved'  $R^2$  can be larger than those of the usual  $R^2$ . Obtani and Hasegawa [7] examine the bias and MSE of  $R^2$  and  $\overline{R}^2$  when proxy variables are used instead of unobservable variables and when the error terms have the normal and the multivariate t distributions. They show that if the unobservable variables are important,  $\overline{R}^2$  can be more unreliable than  $R^2$  in small samples in terms of both bias and MSE.

## **Exclusion relevant variables**

#### Model and estimators:

Suppose that the correct model is

#### Where:

y: an  $n \times 1$  vector of observations, and it represents dependent variable.

 $\ell$ : an *n*×1 vector of ones.

 $X_1$ : an  $n \times k_1$  matrix of none stochastic independent variables.

 $X_2$ : an  $n \times k_2$  matrix of none stochastic independent variables.

 $\beta_0$ : an intercept of regression line.

 $\beta_1$ : an  $k_1 \times 1$  vector of coefficients.

 $\beta_2$ : an  $k_2 \times 1$  vector of coefficients.

 $\varepsilon$ : an *n*×1 vector of normal error terms.

We assume that all independent variables are measures as deviations from their sample mean,  $X_1$  and  $X_2$  are of full rank.

The model is more compactly written as

When the researcher omits variables  $X_2$  mistakenly, the model is misspecified as

The ordinary least squares estimators of  $\beta_0$  and  $\beta_1$  based on the misspecified model (3) are

Since the model to be estimated is misspecified as in (3),  $R^2$  is defined as

 $R^2 = \frac{b_1 S_{11}b_1}{b_1 S_{11}b_1 + e_1'e_1}$  where  $e_1 = y - (\ell \overline{y} + X_1b_1)$  ......(6) Since the parent coefficient of determination is defined based on the true model given in (2), it is defined as

## The density function:

The adjusted  $R^2$  is defined as

We define the following formally general estimator:

$$R^{\bullet 2} = hR^2 + (1-h)$$
 where  $h \ge 1$  and  $(1-h) \le R^{\bullet 2} \le 1$  ......(9)  
where:  
 $R^{\bullet 2} = R^2$  when  $h = 1$  and  $R^{\bullet 2} = \overline{R}^2$  when  $h = \frac{n-1}{n-k_1-1}$ 

Since  $R^{\bullet 2}$  can have any value between (1-h) and (1), therefore  $\overline{R}^{2}$  can be negative if

$$R^2 \leq \frac{k_1}{n-1}$$

The probability density function of  $R^{\bullet 2}$  when there is specification error is defined as the following: **Ohtani [2001]** 

$$p(R^{\bullet 2}) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{w_i(\lambda_1)w_j(\lambda_2)}{B(\frac{V_1}{2}+i,\frac{V_2}{2}+j)} h^{(\frac{-(V_1+V_2)}{2}-i-j+1)} (R^{\bullet 2}+h-1)^{(\frac{V_1}{2}+i-1)} (1-R^{\bullet 2})^{(\frac{V_2}{2}+j-1)} \dots \dots (10)$$

- 0

#### Where:

$$p() \text{ is the density function of } R^{\bullet 2}.$$

$$w_i(\lambda_1) = \frac{\exp(-\lambda_1/2)(\lambda_1/2)^i}{i!} \qquad \text{where } \lambda_1 = \frac{\beta^{\bullet'} X^{\bullet'} X_1 S_{11}^{-1} X_1' X^{\bullet} \beta^{\bullet}}{\sigma^2}$$

$$w_j(\lambda_2) = \frac{\exp(-\lambda_2/2)(\lambda_2/2)^j}{j!} \qquad \text{where } \lambda_2 = \frac{\beta^{\bullet'} X^{\bullet'} M_1 X^{\bullet} \beta^{\bullet}}{\sigma^2}$$

$$and M_1 = I_n - \frac{\ell\ell'}{n} - X_1 S_{11}^{-1} X_1'$$

 $V_1 = k_1$   $V_2 = n - k_1 - 1$   $B(\frac{V_1}{2} + i, \frac{V_2}{2} + j)$  is beta function.

#### Numerical results:

- When there is not specification error  $(\lambda_2 = 0)$ , Figure (1) and Figure (2) show that  $R^2$  and  $\overline{R}^2$  have upward biases, the upward bias of  $R^2$  is larger than that of  $\overline{R}^2$ . However, the variance of  $R^2$  is smaller than that of  $\overline{R}^2$ .
- When there is not specification error  $(\lambda_2 = 0)$ , Figure (3) shows that  $R^2$  has upward biases and  $\overline{R}^2$  has downward biases, the upward bias of  $R^2$  is larger than downward bias of  $\overline{R}^2$ . However, the variance of  $R^2$  is smaller than that of  $\overline{R}^2$ .
- When there is specification error  $(\lambda_2 = 10)$ , Figure (4) and Figure (5) show that  $R^2$  and  $\overline{R}^2$  have downward biases, the downward bias of  $R^2$  is smaller than that of  $\overline{R}^2$ . However, the variance of  $R^2$  is smaller than that of  $\overline{R}^2$ .
- When there is specification error ( $\lambda_2 = 10$ ), Figure (6) shows that  $R^2$  and  $\overline{R}^2$  have downward large biases, the downward bias of  $R^2$  is larger than that of  $\overline{R}^2$ . However, the variance of  $R^2$  is smaller than that of  $\overline{R}^2$ . The variance of  $R^2$  is negative, where the density of  $R^2$  is negative and zero on intervals [0.15,0.4] and [0.4, 1] respectively.
- Comparing figures (1) and (4), figures (2) and (5) and figures (3) and (6), we see that as specification error increases, the biases of  $R^2$  and  $\overline{R}^2$  change the signs from positive to negative, the bias of  $R^2$  becomes smaller than that of  $\overline{R}^2$ . Since the variance of  $R^2$  is smaller than that of  $\overline{R}^2$  irrespective of specification error, therefore the MSE of  $R^2$  is smaller than that of  $\overline{R}^2$  as specification error increases.

The all figures, the dashed curve represents the adjusted  $R^2(\overline{R}^2)$  and the soled curve represents  $R^2$ .

The density functions analysis of  $R^2$  and  $\overline{R}^2$  in misspecified linear regression models



Figure (1): Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.6$  and  $\lambda_2 = 0$ 

 $E(R^2) = 0.6441; Var(R^2) = 0.0125; E(\overline{R}^2) = 0.6022;$  $Var(\overline{R}^2) = 0.0157$ 



Figure (2): Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.9$  and  $\lambda_2 = 0$   $E(R^2) = 0.9138$ ;  $Var(R^2) = 0.0009$ ;  $E(\overline{R}^2) = 0.9036$ ;  $Var(\overline{R}^2) = 0.0011$ 

مجلة الشروق للعلوم التجارية – العدد الثالث – يونيه 2009



**Figure (3):** Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.3$  and  $\lambda_2 = 0$ 

 $E(R^2) = 0.3696$ ;  $Var(R^2) = 0.0239$ ;  $E(\overline{R}^2) = 0.2972$ ;  $Var(\overline{R}^2) = 0.0288$ 



Figure (4): Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.6$  and  $\lambda_2 = 10$  $E(R^2) = 0.4433$ ;  $Var(R^2) = 0.0164$ ;  $E(\overline{R}^2) = 0.3779$ ;

$$Var(\overline{R}^2) = 0.0205$$

The density functions analysis of  $R^2$  and  $\overline{R}^2$  in misspecified linear regression models



**Figure (5):** Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.9$  and  $\lambda_2 = 10$ 

 $E(R^2) = 0.8636$ ;  $Var(R^2) = 0.0017$ ;  $E(\overline{R}^2) = 0.8475$ ;  $Var(\overline{R}^2) = 0.0022$ 



**Figure (6):** Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.3$  and  $\lambda_2 = 10$ 

 $E(R^2) = 0.0249$ ;  $Var(R^2) = -0.0011$ ;  $E(\overline{R}^2) = 0.0343$ ;  $Var(\overline{R}^2) = 0.0036$ 

#### **Inclusion irrelevant variables:**

In a quite parallel way to that above, we can drive the density function of  $R^{\bullet 2}$ , it is obtained from (10) by replacing  $V_1$  by  $\tau_1$ ,  $V_2$  by  $\tau_2$ ,  $\lambda_1$  by  $\mu_1$ , and  $\lambda_2$  by 0.  $p(R^{\bullet 2}) = \sum_{i=0}^{\infty} \frac{w_i(\mu_1)}{B(\frac{\tau_1}{2}+i,\frac{\tau_2}{2})} h^{(\frac{-(\tau_1+\tau_2)}{2}-i+1)} (R^{\bullet 2}+h-1)^{(\frac{\tau_1}{2}+i-1)} (1-R^{\bullet 2})^{(\frac{\tau_2}{2}-1)}$ Where:  $R^{\bullet 2} = R^2$  when h=1 and  $R^{\bullet 2} = \overline{R}^2$  when  $h = \frac{n-1}{n-k_1-k_2-1}$  $\tau_2 = n-k_1-k_2-1$  $\tau_1 = k_1+k_2$ 

 $k_2$  is the number of the irrelevant variables

$$\mu_{1} = \frac{\beta_{1}^{\bullet'} S^{\bullet} \beta_{1}}{\sigma^{2}}$$
  
$$\mu_{1} = \frac{\beta_{1}^{\bullet'} S^{\bullet} \beta_{1}}{\sigma^{2}} \quad where \quad \beta_{1}^{\bullet} = (\beta_{1}, \mathbf{0})' \quad and \quad S^{\bullet} = X^{\bullet'} X$$

Numerical results:



**Figure (7):** Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.6$  and  $k_2 = 1$ 

 $E(R^2) = 0.665; Var(R^2) = 0.0119; E(\overline{R}^2) = 0.602;$  $Var(\overline{R}^2) = 0.0168.$ 



**Figure (8)**: Density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.6$  and  $k_2 = 5$  $E(R^2) = 0.749$ ;  $Var(R^2) = 0.0093$ ;  $E(\overline{R}^2) = 0.602$ ;  $Var(\overline{R}^2) = 0.0233$ 

- Figure (7) shows the density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2, \Phi = 0.6$  when specification error is small ( $k_2 = 1$ ). We see that both  $R^2$  and  $\overline{R}^2$  have upward biases, and the upward bias of  $R^2$  is larger than that of  $\overline{R}^2$ .
- Figure (8) shows the density functions of  $R^2$  and  $\overline{R}^2$  for n = 20,  $k_1 = 2$ ,  $\Phi = 0.6$  when specification error is relatively large ( $k_2 = 5$ ). We see that upward bias of  $R^2$  is much larger than that of  $\overline{R}^2$ , but the variance of  $R^2$  is much smaller than that of  $\overline{R}^2$ .

## **Concluding remarks:**

In this paper, we have analyzed the density functions of  $R^2$  and  $\overline{R}^2$  when there are two types of specification errors for linear regression models.

Our numerical results show the following:

- 1. When the relevant variables are omitted, and when underestimation is more than overestimation,  $R^2$  is better measure of goodness of fit than  $\overline{R}^2$ .
- 2. When irrelevant variables are included, and when underestimation is more than overestimation,  $R^2$  is better measure of goodness of fit than  $\overline{R}^2$ . When overestimation is more than underestimation,  $\overline{R}^2$  is better measure of goodness of fit than  $R^2$ .

# **References:**

- A.P. Barren, 'Note on the unbiased estimation of the squared multiple correlation coefficient', Statistica Neerlandica, Vol 16, 1962, pp 151-163.
- [2] J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 2<sup>nd</sup> edn, Springer-Verlag, New York, 1985.
- [3] M.L. Carrodus and D.E.A. Giles, 'The exact distribution of  $R^2$  when the regression disturbances are auto correlated', Economics Letters, Vo138, 1992, pp 375-380.
- [4] J.S. Cramer, 'Mean and variance of  $R^2$  in small and moderate samples', Journal of Econometrics, Vol 35, 1987, pp 253-266.
- [5] K. Ohtani, 'The density functions of  $R^2$  and  $\overline{R}^2$ , and their risk performance under asymmetric loss in misspecified linear regression models, Economic Modelling, Vol 11,1994, pp63-471.
- [6] K. Ohtani, 'Small sample properties of  $R^2$  based on the Steinrule estimator in a misspecified linear regression model', The Economic Studies Quarterly, Vol 44, 1993, pp 263-268.
- [7] K. Ohtani and H. Hasegawa, 'On small sample properties of  $R^2$  in a linear regression model with multivariate t errors and proxy variables', Econometric Theory, Vol 9, 1993, pp 504-515.
- [8] S.J. Press and A. Zellner, 'Posterior distribution for the multiple correlation coefficient with fixed regressors', Journal of Econometrics, Vol 8, 1978, pp 307-321.