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Point and Interval Estimation of The Inverse Weibull Distribution Parameters under Random Censoring

1. Introduction

It is well known that the Weibull probability density function (PDF) can
be decreasing or unimodal, and its the hazard function (HF) can be either
decreasing or increasing depending on the shape parameter. Because of the
flexibility of the PDF and HF, the Weibull distribution has been used quite
extensively when the data indicate a monotone HF. But it cannot be used at
all if the data indicate a non-monotone and unimodal HF. In many practical
situations, it is often known a priori that the hazard rate cannot be
monotone. It may happen that the course of a disease is such that the
mortality reaches a peak after some finite period, and then declines slowly.
For example, Langlands et al. (1979) have studied breast cancer data and
observed that the mortality increases initially, reaches to a peak after some
time and then declines slowly i.e., associated hazard rate is modified bathtub
or particularly uni-modal. Such types of data can be modeled through IW
distribution. In survival studies, IW distribution has been considered by
many authors. Bennette (1983) analyzed the data from the Veterans
administration lung cancer trial presented by Prentice (1973) and showed
that the empirical failure rates for both low and high-performance status
groups were unimodal in nature. It is important to analyze such data sets
with the appropriate models. If the empirical studies indicate that the hazard
function might be unimodal, then the IW distribution is found to be very
appropriate over Weibull distribution when data indicates the non-monotone
hazard rate. Erto (1989) showed that the IW distribution provides a good fit
to several data given in literature, such as the times to breakdown of an
insulating fluid subject to the action of a constant tension. Calabria and
Publini (1990) analyzed the point maximum likelihood function of the IW
parameters and reliability in complete and censored samples. Khan et al.
(2008) have discussed the classical statistical properties of IW distribution.

Keller and Kamath (1982) derived this model on the basis of physical
considerations on some failures of mechanical components subject to
degradation phenomena. By the analysis of mechanical components of
diesel engines produced by several European vehicle or engine
manufacturers, Keller et al. (1985) showed that the two-parameter IW model
gave the best fit to the failure data of dynamic engine components (i.e.
pistons, crankshaft, main bearings, etc.) with respect to the other
distributions considered (exponential and two parameter Weibull). This
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result seemed to be consistent with the physical derivation of the W
distribution.

Keller and Kamath (1982) introduced the IW distribution with two
parameters « and £. The pdf and cdf of the IW distribution are respectively
given by:

Floa B) = af%x@*D exp (— (%)_a), x>0;a>08>0, (1)
and
F(x;a,ﬁ)zexp(—(%)_a), x>0;a>0,>0, (2

Where « is the shape parameter and 8 is a scale parameter. Figure (1)
illustrated the behavior of the IW distribution at « = 1 and for some various
values of 3.
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Figure 1: Density function of IW distribution for some values of g
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Figure 2: Density function of IW distribution for some values of & and S.
The survival function of the IW distribution is given by
x %4
S(x;a,B) = 1—exp(—(E) ), x>0;a>0,8>0

The hazard function of the IW distribution is given by

rceronl-(G))

() )

and its shape is illustrated in Figure (2) for some various values of a and £.

h(x;a,B) = , x>0;a>0,8>0,
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Figure 3: Hazard function of the IW distribution for different values of a« when f = 1.
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Figure 4: Hazard function of the IW distribution for different values of o and 3.

In practical life testing experiment, censored data arise when the
experiments including the lifetimes of test units have to be terminated
before collecting complete observation. The censoring technique is common
and unavoidable in practice, especially in reliability engineering, for many
reasons such as time constraint and cost reduction. Various kinds of
censoring have been discussed in the literature, with the most common
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censoring schemes being Type-I censoring, Type-1l censoring and random
censoring scheme.

Random censoring is a situation when an item under study is lost or
removed randomly from the experiment before its failure. In other words,
some subjects in the study have not experienced the event of interest at the
end of the study. For example, in a clinical trial or a medical study, some
patients may still be untreated and leave the course of treatment before its
completion. In reliability engineering, an electrical or electronic device such
as bulb on test may break before its failure.

Also, many authors have discussed various types of distributions in
random censoring but they always use same distributions with different
parameters for both lifetime and censoring time distributions. Rarely has
considered different distributions for lifetime and censoring times in the
literature. Kim (1993) considered chi-square goodness of fit tests for
randomly censored data. Ghitany and Al-Awadhi (2002) analyzed in Burr
Type XII distribution. Recently, Danish and Aslam (2013) discussed the
Bayesian estimation for randomly censored generalized exponential
distribution under asymmetric loss functions. Danish and Aslam (2014)
developed the Bayesian inference for the randomly censored Weibull
distribution. Krishna et al. (2015) dealt with estimation in Maxwell
distribution with randomly censored data. Garg et al. (2016) considered
randomly censored generalized inverted exponential distribution. Kumar
and Kumar (2019) estimated the inverse weibull parameters based on
random censoring data. Only Neha and Hare (2018) has considered different
distributions for lifetime and dropout times, they considered clinical trials
with randomly censored data having exponential healing time and Raleigh
dropout times.

In this paper, we consider the lifetime units follows the IW
distribution with parameters a and S and the censoring units follows the
exponential distribution with scale parameters A. The paper is organized as
follows; In Section 2, a mathematical modeling is developed for randomly
censored data. In Section 3, the maximum likelihood estimation method is
used to obtain the point estimators of the unknown parameters. In Section 4,
asymptotic and Bootstrap confidence intervals are obtained. Finally
simulation results and data analysis are presented in Sections 5 and 6,
respectively.

316



2019 s — e (slall anall -l gl 35,200 Ao

2. Model Assumption and Description

In a life testing experiment suppose n observations set under the test
and their lifetimes taken as Xi,Xs,...,X,, random variables which are
identically and independently distributed (i.i.d.) with pdf f(x;6) and cdf
F(x;0). Also, assume that C;,C,, ..., C,, be the random censored times of
these observations. Suppose that, the pdf of C;'s be g(c; 1) and the cdf is
G(c,N) Further, we assume X;'s and C;'s be mutually independent. It is
noticed that, between X;'s and C;’s only one will actually be observed and
let the actual observed time be T; = min(X;,C;),i =1, ...,n the indicator
variable §; is also defined as

1 ; XiSCi

and the likelihood function under the random censoring is given by (lawless
2011).

n

L=] Jire reorFlgsr - )

i=1

Suppose that the lifetime X follows the IW distribution with unknown
parameters o and [ and the censoring time C independently follows
exponential distribution with scale parameter A its pdf, cdf and reliability
function respectively are given by,

g(c;A) = Aexp(—Ac) , t,A>0,
Gc;a,B)=1—exp(—Ac)), t>0;A>0,
and

R(c;a,B) = exp(—Ac;), t>0;1>0. (5

3. Maximum Likelihood Estimation

In this section, we obtain the MLEs for the unknown parameters of the W
distribution based on the random censoring data. Let (t;,4;) =
(tq,871), (tg, 62), ... , (tn, 6,) be a random censoring sample drown from the
model in equation (4). Then the likelihood function becomes
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L H [aﬂat —(@+D) exp( (ﬁ) )ex p(—lti)ri [Aex p(=At) (1 — exp (— (%)_a)]

Where Y=, 8; =r isthe observed number of uncensored life time, or
failures. (Lawless 2011)
Then

L= [a’ﬁ‘” ﬁ t;” (@D (exp (—B“ zn: (5}1.“[“)) (exp (—Azn: Siti>>] [A"‘Tex p (—Ai(l

i=1 i=1 i=1
- 6i)ti> 1_[(1 - exp(—ﬁati_a))l_si],

i=1

1-6;

The corresponding log |Ike|lh00d function WI|| be

l—rlna+raln(ﬁ)—(a+1)Z6ln(t) [?“Z6t‘“ -/1251: +(n—r)nd

—Azgu—6on+2;u—6omu—emxﬂWe“L

(6)
Differentiating (6) with respect to «, 8 and A as follows:
:—; =~ +7in(B) — Ty & Int; — BE T, 8t (Inf — Int,) + Ty wy; (@, B)(Ing — Inty),

(7)
al _ ar a—1 —a
B af N 6t + - 21 1wii(a, B), (8)
and
al r
5= 7 Xt ©

exp(—B%t;" )%, ¢
Where, wy; (e, ) = (1 = 6;) 1-exp(—p%t;=%) °

Equating the first derivations in (7), (8) and (9) to zero and solving for «, B
and 1 to get the MLEs &, 8 and 1 of a, 8 and A, respectively.

These equations do not yield any explicit solutions for (a and ). Therefore,
these are to be solved numerically using R software as will be shown in
section 5.
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4. Confidence Intervals

In this section, we propose different confidence intervals. One is based
on the asymptotic distribution of o, 8 and A and two different bootstrap

confidence intervals.

4.1 Asymptotic Confidence Intervals

The asymptotic variance-covariance matrix of the MLEs of «, § and 1
can be obtained by inverting the observed information matrix I;*(8), and is
given

[0%InL,  9%*InL  4*InL]

da®  dad dadl ~ A
) ) A ) var(a) cov(a,B) cov(a,X)
—1(A 0°InL  0°InL 9°InL n A ~ ~n
I (9) = - = |cov(@,B) wvar(B) cov(XB)|

9adp  0p*  0poa “P B) |
Il 9%InL  92InL cov(@,)) cov(LB)  wvar(R)

2
L dadA  9poA  0A° (6=0)

Where 8 =(a,5,1),6=(a,B,1). The elements of the observed
information matrix are given as follows:

azl n n

== B BT U — Int)? + ) wai(@ Bwsi(@, B) (inf — Int)
i=1 =1

O 15 0+ 2N Wi B

6,82 - ﬂz ala ﬁ £ iti ,Bi=1W2i a:ﬁ Wy a;ﬁ ’

0’  n-r

o e

02l 9% r a_liat , Lo, +z": |
dadf  0Bda P ap L it (Infp =2 = Inty) . 1W2i(“'ﬂ)W5i(“,ﬁ).
1= 1=
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and

0’L 0%l “ o
apor  9rIB

(1 sy SPEBUET BT
Where, wy;(a, B) = (1 - 6)) T

wsi(a, B) = [(B%; ™ — 1)(1 — exp(—B%t;~%)) — exp(=f%t;~) p%t; ¢,

wai(a B) = [ (~aB 6 + <) (L= exp(=pt7)) -

af* texp(—p%t;™%) ti'“] and
wei(a, ) = [ (@Bt 7(tnf — tnty) + £+ % (nf ~ Int)) (1 ~ exp(~=7)
B B
— @B exp(=F7t ) (Inf — nto)|
According to particular regularity conditions, the two-sided 100(1 — y)%,

0 < y < 1, asymptotic confidence intervals for the parameters «, § and A

can be obtained as:

At ZypVVi,  BEZyoVay At Z, 5 Vss.

Where Z,,, is the upper (‘2—/) th percentile of the standard normal

distribution, V;;,i = 1,2,3 is the asymptotic variances a, 8 and A, respectively.

4.2 Bootstrap Confidence Intervals

The bootstrap confidence intervals are approximate confidence interval
but in general are better approximate than standard intervals. A parametric
bootstrap interval provides much more information about the population
value of the quantity of interest than does a point estimate. The parametric

bootstrap methods are of two types:-

320



2019 s — e (slall anall -l gl 35,200 Ao

(i) Percentile bootstrap method (Boot-p) proposed by Efron (1993),
(i) Bootstrap-t method (Boot-t) proposed by Hall (1988).

- Percentile Bootstrap (Boot-P) Confidence Interval

The boot-p method is rather simple and constructs confidence
intervals directly from the percentiles of the bootstrap distribution of the
estimated parameters. It given by the following steps:

I. A randomly censored sample is generated from the original
dataT = (ty,t,..t,) and the MLE @ of the parameter 6 is
computed.

Il.  Again, an independent randomly censored bootstrap sample T* =
(t,% t," ... t,") is generated by using .

1. Now, compute the bootstrap MLE 8* of parameter 6 based on T*,
as in step-1.

IV. Repeat steps 2-3, B times representing B bootstrap MLE’s 0*’s
based on B different bootstrap samples, i=1, 2, ... B.

V. Arrange all 8*s in an ascending order to obtain the bootstrap
sample
ie 87y <07y < <8p. An approximate 100(1 — w)%

boot-p  confidence interval for 6 is obtained Dby
0" ()] 0|12} )
(%"l P -2y
Where, % is the quantity that helps to determine the bootstrap point.
- Bootstrap-t (Boot-t) Confidence Intervals

The bootstrap-t confidence interval is given by the following steps:
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I. Steps 1 and 2 of boot-p and boot-t methods are the same.

Il. Compute the bootstrap-t statistic T* = 00 for 8, where b =
1,2,...B.

I1l. To obtain a set of bootstrap statistics T*;;i = 1,2, ..., B repeat steps
2-3, B times.

IV. Let T* (1) < T*(p) < -+ < T"(g)be the ordered values of T*;;i =
1,2,...,B.
V. Now, the approximate 100(1 — w)% boot-t confidence interval for

parameter 0 is obtained by

(é T [V (0D 0 - T*[(g)xg]m>

5. Simulation Study

A simulation study was carried to check the performance of the
accuracy of point and interval estimates for several cases, of which
estimates three parameters of IW distribution and exponential distribution (
a,B and A) for replications m=1000, for different sample size (n) as
n=35,50,80,100,150 and different parameters values. All computations are
obtained based on the R language.

Also, for the generation of actual observed time t from IW
distribution and exponential distribution, we use the inversion method

which is given by:
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1. Random number Generation for lifetime (X) from IW
distribution
U = F(X).

By substituting F(x) in (2), we get
=ew(=(5) )
Where, u is distributed as U (0, 1).

Hence,
1

x = (L) (10)

" log(w)

2. Random number Generation for censoring times (C) from
exponential distribution

U=G(C).
By substituting G(C) in (4), we get
u=1-—exp(ic).
Where, u is generated from U (0, 1).
Hence,

_ In(1—u)

(11)

2
The following steps were followed to obtain the results:
I. Specify initial values for parameters «, and A. as (0.9,1,0.3),

(2.5,4.2,0.1) and (1.9,2,0.3)

I. Specify the sample size n. as n=35,50,80,100,150,

I1l. Generate m times (m=1000) of random samples of (X, C) from
the model in equations (10) and (11),

IV. Determine the observed unites (t) which is the minimum of (X,
C) and the indicator variable (§) from the model (3),

V. Obtain the maximum likelihood estimates (MLES),
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VI. Obtain the mean, bias, mean squared error (MSE), asymptotic
and bootstrap confidence intervals (Cl's) for the unknown
parameters, average interval lengths (AILs) and coverage
probability (CP) for the different sample size,

VII.  We assumed the lifetimes and the censoring times have the

same sample size.

Discussion on simulation study

All the calculations were performed using the statistical R software.

The main results of the simulation study are listed in Tables 1-3 with the

following remarks.

As expected, it is noted that the bias decreases as the sample size
increases.

The coverage probabilities for the unknown parameters are closed
to 95%.

The average length of confidence intervals decreases when sample
size increases.

Estimates obtained by maximum likelihood estimation are almost
unbiased.

Average Length of confidence intervals based on maximum
likelihood estimation method increases as the parametric values
increases.

Bootstrap (t - p) confidence intervals in most cases better than the

asymptotic confidence intervals.
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6. Application to Real Data

In this section we analyze a real data set which consists of the survival
times for 50 patients with advanced acute myelogenous leukemia reported to
the international bone marrow transplant registry. The following data from
Ghitany and Alawadhy (2002).

The leukemia free-survival times (in months) for the 50 patients (*)
indicates the censored observations (exponential distribution), the data set is
given as:

0.030, 0.493, 0.855, 1.184, 1.283, 1.480, 1.776, 2.138, 2.500,

2.763, 2.993, 3.224, 3.421, 4.178, 4.441*, 5.691, 5.855*, 6.941%*,
6.941, 7.993*, 8.882, 8.882, 9.145*, 11.480, 11.513, 12.105*, 12.796,
12.993*, 13.849*, 16.612*, 17.138*, 20.066, 20.329*, 22.368*,
26.776*, 28.717*, 28.717*, 32.928*, 33.783*, 34.221*, 34.770%*,
39.539*, 41.118*, 45.033*, 46.053*, 46.941*, 48.289*, 57.401*,
58.322*, 60.625*
Now, first of all, we fit the data to IW and exponential distributions.
Maximum likelihood estimation methods are applied for estimating the
models unknown parameters. The kolmogorov- smirnov (k-s) test is used
for this purpose. With the following hypothesis:

H,: the data come from the distribution.
H;: the data does not come from the distribution.
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Table 2: the values of goodness of fit test

K-S
Distribution —
D-statistics p- value
IW 0.2092 0.2907
Exponential* 0.17377 0.3664

Note: (*) indicates the censoring times distribution

We note that distance (D) value of k-s test (0.2092, 0.17377) is less than the
p — value (0.2907, 0.3664). Therefore the null hypothesis does not rejected,
this is lifetime data and censoring time data came from the IW Distribution

and exponential distribution respectively.

L
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Figure 3: Empirical distribution and cdf for myelogenous data

Table 3: The Estimates of The Parameters from The Real Data Set

Confidence intervals

Parameters MLE’s

AlLs AlLs AlLs
(Asy CI) (Boot (p)) (Boot (t))
@ 0.310 0.15706 0.2568 0.18289
' (0.2299,0.3869) (0.2633,0.5201) (0.18331,0.3662)
E’ 13.349 41.92328 9.15286 18.54920
: (4.8825,46.806) (7.97908,17.13194) (9.23039,27.77959)
P 0.030 0.02245 0.01121 0.01489
' (0.0203,0.0428)  (0.01985,0.03106) (0.02932,0.04421)

Note: AlLs- Average interval lengths
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Table 1: Average estimated values, MSEs, bias, asymptotic Cl and bootstrap (t-p) intervals

35

50

80

100

150

of IW distribution parameters under random censoring.

@ =09, By=1 1, =03
Mean Bias AlLs AlLs AlLs cp
(MSEs) (Asymptotic CI) (Boot - P) (Boot —t)

o 0T o 0.74361 0.72342 0.70080 .

(©0.03288) (0.65118,1.39479)  (0.65279,1.37621)  (0.64715,1.34795) o

105343 100928 0.96978 118134

B 00577y 005343 (0693921.79320)  (0.68402,1.65379)  (0.69931,1.88065) 01

-~ 031437 0.31191 0.31096 0.30667

A 0o0632) O0M3T  (017970049161)  (0.18021,049118)  (0.18567,049234) °O*°

092021 0.52475 0.52652 0.50844

T 001930) 092921 (068349,1.20824)  (0.70633,1.23285)  (0.69364,1.20208) OO

102202 (oo 0.83492 0.75340 0.86426 05

B (o3t © (0.72141,155632)  (0.70230,1.45570)  (0.72676,1.50102) >

. 030850 0.25521 0.25198 0.25125

A 0o00asa) 900850 (410849 045364)  (0.19589,044787)  (0.20334,045459) 048

_0.92216 0.42972 0.42464 0.43535

@ o127y 092216 (072737.1.15700)  (0.72043,1.14507)  (0.73611,1.17145) %3

101803 0.62794 0.59693 0.62928

B (002473 001803 ((77167130961)  (0.75502,1.35195)  (0.77827,1.40755) O*7

.~ 030214 0.21789 0.20450 0.21248

A oozrz) 000214 051308043187)  (0.21075041526)  (0.21288,0.42536) O*3

_ 0.9189 0.3645 0.3689 0.3722

@ 0ooor) 0018 07aa511000)  (0.7462,1.1151)  (0.743311155) 70

o 10133 0.5500 0.5289 0.5584

B oowsy 0013 (g790713407)  (0.7872,13161)  (0.8011,1359) /2

. 03038 0.1777 0.1736 0.1778

A 0o0019) 00038 (0293704013)  (0.2262,03997)  (0.2273,04051) 204
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Table 2: Average estimated values, MSEs, bias, asymptotic Cl and bootstrap (t-p) intervals
of IW distribution parameters under random censoring.
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Table 3: Average estimated values, MSEs, bias, asymptotic Cl and bootstrap (t-p) intervals
of IW distribution parameters under random censoring.
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