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Abstract The inverse weibull (IW) distribution has many applications in 

problems related to medical research and life testing. In this paper, point 

and interval estimation of the IW distribution parameters are considered in 

presence of random censoring. Maximum likelihood estimation (MLE) is 

considered for the models unknown parameters. Asymptotic and bootstrap 

confidence intervals are evaluated for the unknown parameters. Simulation 

study is carried out to see the performance of the maximum likelihood 

estimators (MLEs). One real data set has reanalyzed for illustrative purpose.  
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1.  Introduction   

It is well known that the Weibull probability density function (PDF) can 

be decreasing or unimodal, and its the hazard function (HF) can be either 

decreasing or increasing depending on the shape parameter. Because of the 

flexibility of the PDF and HF, the Weibull distribution has been used quite 

extensively when the data indicate a monotone HF. But it cannot be used at 

all if the data indicate a non-monotone and unimodal HF. In many practical 

situations, it is often known a priori that the hazard rate cannot be 

monotone. It may happen that the course of a disease is such that the 

mortality reaches a peak after some finite period, and then declines slowly. 

For example, Langlands et al. (1979) have studied breast cancer data and 

observed that the mortality increases initially, reaches to a peak after some 

time and then declines slowly i.e., associated hazard rate is modified bathtub 

or particularly uni-modal. Such types of data can be modeled through IW 

distribution. In survival studies, IW distribution has been considered by 

many authors. Bennette (1983) analyzed the data from the Veterans 

administration lung cancer trial presented by Prentice (1973) and showed 

that the empirical failure rates for both low and high-performance status 

groups were unimodal in nature. It is important to analyze such data sets 

with the appropriate models. If the empirical studies indicate that the hazard 

function might be unimodal, then the IW distribution is found to be very 

appropriate over Weibull distribution when data indicates the non-monotone 

hazard rate. Erto (1989) showed that the IW distribution provides a good fit 

to several data given in literature, such as the times to breakdown of an 

insulating fluid subject to the action of a constant tension. Calabria and 

Publini (1990) analyzed the point maximum likelihood function of the IW 

parameters and reliability in complete and censored samples. Khan et al. 

(2008) have discussed the classical statistical properties of IW distribution.  

Keller and Kamath (1982) derived this model on the basis of physical 

considerations on some failures of mechanical components subject to 

degradation phenomena. By the analysis of mechanical components of 

diesel engines produced by several European vehicle or engine 

manufacturers, Keller et al. (1985) showed that the two-parameter IW model 

gave the best fit to the failure data of dynamic engine components (i.e. 

pistons, crankshaft, main bearings, etc.) with respect to the other 

distributions considered (exponential and two parameter Weibull). This 
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result seemed to be consistent with the physical derivation of the IW 

distribution. 

 Keller and Kamath (1982) introduced the IW distribution with two 

parameters 𝛼 and 𝛽. The pdf and cdf of the IW distribution are respectively 

given by: 

𝑓(𝑥; 𝛼, 𝛽) = 𝛼𝛽𝛼𝑥−(𝛼+1) 𝑒𝑥𝑝 (− (
𝑥

𝛽
)
−𝛼

) ,   𝑥 > 0 ; 𝛼 > 0, 𝛽 > 0,            (1) 

and 

𝐹(𝑥; 𝛼, 𝛽) = 𝑒𝑥𝑝 (−(
𝑥

𝛽
)
−𝛼

) ,   𝑥 > 0 ; 𝛼 > 0, 𝛽 > 0,                                 (2) 

Where 𝛼 is the shape parameter and 𝛽 is a scale parameter. Figure (1) 

illustrated the behavior of the IW distribution at 𝛼 = 1 and for some various 

values of 𝛽. 

 

Figure 1: Density function of IW distribution for some values of 𝛽 



Point and Interval Estimation of The Inverse Weibull Distribution Parameters under Random Censoring 

 

 

 

 

 

 

 

 

 

 

103 

 
Figure 2: Density function of IW distribution for some values of 𝛼 and 𝛽. 

 

The survival function of the IW distribution is given by  

𝑆(𝑥; 𝛼, 𝛽) = 1 − 𝑒𝑥𝑝 (− (
𝑥

𝛽
)
−𝛼

) ,   𝑥 > 0 ; 𝛼 > 0, 𝛽 > 0                     

The hazard function of the IW distribution is given by 

ℎ(𝑥; 𝛼, 𝛽) =
𝛼𝛽𝛼𝑥−(𝛼+1) exp (−(

𝑥
𝛽
)
−𝛼

)

1 − exp (− (
𝑥
𝛽
)
−𝛼

)

  ,   𝑥 > 0 ; 𝛼 > 0, 𝛽 > 0,                      

and its shape is illustrated in Figure (2) for some various values of 𝛼 and  𝛽. 
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Figure 3: Hazard function of the IW distribution for different values of α when 𝛽 = 1. 

 

Figure 4: Hazard function of the IW distribution for different values of α and 𝛽. 

 

In practical life testing experiment, censored data arise when the 

experiments including the lifetimes of test units have to be terminated 

before collecting complete observation. The censoring technique is common 

and unavoidable in practice, especially in reliability engineering, for many 

reasons such as time constraint and cost reduction. Various kinds of 

censoring have been discussed in the literature, with the most common 
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censoring schemes being Type-I censoring, Type-II censoring and random 

censoring scheme. 

Random censoring is a situation when an item under study is lost or 

removed randomly from the experiment before its failure. In other words, 

some subjects in the study have not experienced the event of interest at the 

end of the study. For example, in a clinical trial or a medical study, some 

patients may still be untreated and leave the course of treatment before its 

completion. In reliability engineering, an electrical or electronic device such 

as bulb on test may break before its failure.  

  Also, many authors have discussed various types of distributions in 

random censoring but they always use same distributions with different 

parameters for both lifetime and censoring time distributions. Rarely has 

considered different distributions for lifetime and censoring times in the 

literature. Kim (1993) considered chi-square goodness of fit tests for 

randomly censored data. Ghitany and Al-Awadhi (2002) analyzed in Burr 

Type XII distribution. Recently, Danish and Aslam (2013) discussed the 

Bayesian estimation for randomly censored generalized exponential 

distribution under asymmetric loss functions. Danish and Aslam (2014) 

developed the Bayesian inference for the randomly censored Weibull 

distribution. Krishna et al. (2015) dealt with estimation in Maxwell 

distribution with randomly censored data. Garg et al. (2016) considered 

randomly censored generalized inverted exponential distribution. Kumar 

and Kumar (2019) estimated the inverse weibull parameters based on 

random censoring data. Only Neha and Hare (2018) has considered different 

distributions for lifetime and dropout times, they considered clinical trials 

with randomly censored data having exponential healing time and Raleigh 

dropout times. 

In this paper, we consider the lifetime units follows the IW 

distribution with parameters 𝛼 and 𝛽 and the censoring units follows the 

exponential distribution with scale parameters λ. The paper is organized as 

follows; In Section 2, a mathematical modeling is developed for randomly 

censored data. In Section 3, the maximum likelihood estimation method is 

used to obtain the point estimators of the unknown parameters. In Section 4, 

asymptotic and Bootstrap confidence intervals are obtained. Finally 

simulation results and data analysis are presented in Sections 5 and 6, 

respectively.  
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2. Model Assumption and Description  

In a life testing experiment suppose n observations set under the test 

and their lifetimes taken as X1, X2, … , Xn, random variables which are 

identically and independently distributed (i.i.d.) with pdf 𝑓(x; θ) and cdf 

𝐹(x; θ). Also, assume that 𝐶1, 𝐶2, … , 𝐶𝑛 be the random censored times of 

these observations. Suppose that, the pdf of  𝐶𝑖′𝑠 be 𝑔(𝑐; λ) and the cdf is 

𝐺(𝑐, λ) Further, we assume 𝑋𝑖′𝑠 and 𝐶𝑖′𝑠 be mutually independent. It is 

noticed that, between 𝑋𝑖′𝑠 and 𝐶𝑖′𝑠 only one will actually be observed and 

let the actual observed time be Ti = min(Xi, Ci), i = 1, … , n  the indicator 

variable δi is also defined as 

δi = {
1   ;    Xi ≤ Ci

0   ;    Xi > Ci
                                                                (3) 

and the likelihood function under the random censoring is given by (lawless 

2011). 

L = ∏[𝑓(ti)

n

i=1

𝑅(ti)]
δi[𝑔(ti)𝑆(ti)]

1−δi                                                (4) 

Suppose that the lifetime X follows the IW distribution with unknown 

parameters α and β and the censoring time C independently follows 

exponential distribution with scale parameter λ its pdf, cdf and reliability 

function respectively are given by,   

𝑔(𝑐; 𝜆) = 𝜆 𝑒𝑥𝑝(−𝜆𝑐𝑖)  ,    𝑡, 𝜆 > 0, 

𝐺(𝑐; 𝛼, 𝛽) = 1 − 𝑒𝑥 𝑝(−𝜆𝑐𝑖) ,   𝑡 > 0 ; 𝜆 > 0,   

and 

   𝑅(𝑐; 𝛼, 𝛽) = 𝑒𝑥 𝑝(−𝜆𝑐𝑖) ,   𝑡 > 0 ; 𝜆 > 0.                                     (5) 

 

3. Maximum Likelihood Estimation  

In this section, we obtain the MLEs for the unknown parameters of the IW 
distribution based on the random censoring data. Let (t𝑖, 𝛿𝑖) =
(𝑡1, 𝛿1), (𝑡2, 𝛿2),… , (𝑡𝑛, 𝛿𝑛) be a random censoring sample drown from the 
model in equation (4). Then the likelihood function becomes  



Point and Interval Estimation of The Inverse Weibull Distribution Parameters under Random Censoring 

 

 

 

 

 

 

 

 

 

 

103 

𝐿 = ∏[𝛼𝛽𝛼t𝑖
−(𝛼+1) exp (− (

𝑡𝑖
𝛽
)

−𝛼

) 𝑒𝑥 𝑝(−𝜆𝑡𝑖)]

𝛿𝑖

 

𝑛

𝑖=1

[𝜆𝑒𝑥 𝑝(−𝜆𝑡𝑖) (1 − exp (−(
𝑡𝑖
𝛽
)

−𝛼

)]

1−𝛿𝑖

   

Where    ∑ 𝛿𝑖
𝑛
𝑖=1 = r  is the observed number of uncensored life time, or 

failures. (Lawless 2011) 

Then  

𝐿 = [𝛼𝑟𝛽𝛼𝑟 ∏ 𝑡𝑖
−(𝛼+1)𝛿𝑖

𝑛

𝑖=1

(exp (−𝛽𝛼 ∑ 𝛿𝑖𝑡𝑖
−𝛼

𝑛

𝑖=1

))(𝑒𝑥𝑝 (−𝜆 ∑𝛿𝑖𝑡𝑖

𝑛

𝑖=1

))] [𝜆𝑛−𝑟𝑒𝑥 𝑝 (−𝜆 ∑(1

𝑛

𝑖=1

− 𝛿𝑖)𝑡𝑖)∏(1 − exp (−𝛽𝛼𝑡𝑖
−𝛼))1−𝛿𝑖

𝑛

𝑖=1

], 

The corresponding log likelihood function will be  

𝑙 = 𝑟𝑙𝑛𝛼 + 𝑟𝛼𝑙𝑛(𝛽) − (𝛼 + 1) ∑𝛿𝑖ln(𝑡𝑖)

𝑛

𝑖=1

− 𝛽𝛼 ∑ 𝛿𝑖𝑡𝑖
−𝛼

𝑛

𝑖=1

 – 𝜆 ∑ 𝛿𝑖𝑡𝑖

𝑛

𝑖=1

+ (𝑛 − 𝑟)𝑙𝑛𝜆

− 𝜆 ∑(1 − 𝛿𝑖)𝑡𝑖

𝑛

𝑖=1

+ ∑(1 − 𝛿𝑖) ln(1 − exp (−𝛽𝛼𝑡𝑖
−𝛼)

𝑛

𝑖=1

,    

(6) 

Differentiating (6) with respect to 𝛼, 𝛽 and 𝜆 as follows: 

 
𝜕𝑙

𝜕𝛼
=

𝑟

𝛼
+ 𝑟𝑙𝑛(𝛽) − ∑ 𝛿𝑖

𝑛
𝑖=1 lnt𝑖 − 𝛽𝛼 ∑ 𝛿𝑖𝑡𝑖

−𝛼𝑛
𝑖=1 (𝑙𝑛𝛽 − lnt𝑖) + ∑ 𝑤1𝑖(𝛼, 𝛽)(𝑙𝑛𝛽 − lnt𝑖)

𝑛
𝑖=1 ,     

(7)  
𝜕𝑙

𝜕𝛽
=

𝛼𝑟

𝛽
− 𝛼𝛽𝛼−1 ∑ 𝛿𝑖𝑡𝑖

−𝛼𝑛
𝑖=1 +

𝛼

𝛽
∑ 𝑤1𝑖(𝛼, 𝛽)𝑛

𝑖=1 ,                                          (8) 

and  

𝜕𝑙

𝜕𝜆
=

𝑛−𝑟

𝜆
− ∑ t𝑖

𝑛
𝑖=1 .                                                                                         (9) 

Where, 𝑤1𝑖(𝛼, 𝛽) = (1 − 𝛿𝑖)
𝑒𝑥𝑝(−𝛽𝛼𝑡𝑖

−𝛼)𝛽𝛼𝑡𝑖
−𝛼

1−𝑒𝑥𝑝(−𝛽𝛼𝑡𝑖
−𝛼)

.  

Equating the first derivations in (7), (8) and (9) to zero and solving for 𝛼, 𝛽 

and 𝜆 to get the MLEs �̂�, �̂� and �̂� of 𝛼, 𝛽 and 𝜆, respectively. 

These equations do not yield any explicit solutions for (𝛼 and 𝛽). Therefore, 

these are to be solved numerically using R software as will be shown in 

section 5. 
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4. Confidence Intervals  

In this section, we propose different confidence intervals. One is based 

on the asymptotic distribution of α, β and λ and two different bootstrap 

confidence intervals. 

4.1 Asymptotic Confidence Intervals  

The asymptotic variance-covariance matrix of the MLEs of 𝛼, 𝛽 and 𝜆 

can be obtained by inverting the observed information matrix I0
−1(θ̂), and is 

given 

I0
−1(θ̂) = −

[
 
 
 
 
 
 
∂2ln𝐿

𝜕𝛼2

∂2ln𝐿

𝜕𝛼𝜕𝛽

∂2ln𝐿

𝜕𝛼𝜕𝜆

∂2ln𝐿

𝜕𝛼𝜕𝛽

∂2ln𝐿

𝜕𝛽2

∂2ln𝐿

𝜕𝛽𝜕𝜆

∂2ln𝐿

𝜕𝛼𝜕𝜆

∂2ln𝐿

𝜕𝛽𝜕𝜆

∂2ln𝐿

𝜕𝜆2 ]
 
 
 
 
 
 
−1

|

|

(𝜃=θ̂)

= [

𝑣𝑎𝑟(�̂�) 𝑐𝑜𝑣(�̂�, β̂) 𝑐𝑜𝑣(�̂�, λ̂)

𝑐𝑜𝑣(�̂�, β̂) 𝑣𝑎𝑟(β̂) 𝑐𝑜𝑣(λ̂, β̂)

𝑐𝑜𝑣(�̂�, λ̂) 𝑐𝑜𝑣(λ̂, β̂) 𝑣𝑎𝑟(λ̂)

]. 

Where θ̂ = (�̂�, �̂�, �̂�), 𝜃 = (𝛼, 𝛽, 𝜆). The elements of the observed 

information matrix are given as follows: 

𝜕2𝑙

𝜕𝛼2
= −

𝑟

𝛼2
− 𝛽𝛼 ∑𝛿𝑖𝑡𝑖

−𝛼

𝑛

𝑖=1

(𝑙𝑛𝛽 − 𝑙𝑛𝑡𝑖)
2 + ∑𝑤2𝑖(𝛼, 𝛽)𝑤3𝑖(𝛼, 𝛽)

𝑛

𝑖=1

(𝑙𝑛𝛽 − 𝑙𝑛𝑡𝑖)
2;  

𝜕2𝑙

𝜕𝛽2
= −

𝛼𝑟

𝛽2
− 𝛼(𝛼 − 1)𝛽𝛼−2 ∑𝛿𝑖𝑡𝑖

−𝛼

𝑛

𝑖=1

+
𝛼

𝛽
∑𝑤2𝑖(𝛼, 𝛽)𝑤4𝑖(𝛼, 𝛽)

𝑛

𝑖=1

; 

∂2𝑙

∂λ2
= −

n − r

λ2
; 

𝜕2𝑙

𝜕𝛼𝜕𝛽
=

𝜕2𝑙

𝜕𝛽𝜕𝛼
=

𝑟

𝛽
− 𝛼𝛽𝛼−1 ∑𝛿𝑖𝑡𝑖

𝑛

𝑖=1

(𝑙𝑛𝛽 −
1

𝛼
− 𝑙𝑛𝑡𝑖)  + ∑𝑤2𝑖(𝛼, 𝛽)𝑤5𝑖(𝛼, 𝛽)

𝑛

𝑖=1

;
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and  

∂2𝑙

𝜕𝛽 ∂λ
=

∂2𝑙

∂λ𝜕𝛽
= 0. 

Where, 𝑤2𝑖(𝛼, 𝛽) = (1 − 𝛿𝑖)
exp(−𝛽𝛼𝑡𝑖

−𝛼)𝛽𝛼𝑡𝑖
−𝛼

(1−exp(−𝛽𝛼𝑡𝑖
−𝛼))2

,  

𝑤3𝑖(𝛼, 𝛽) = [(𝛽𝛼𝑡𝑖
−𝛼 − 1)(1 − exp(−𝛽𝛼𝑡𝑖

−𝛼)) − exp(−𝛽𝛼𝑡𝑖
−𝛼) 𝛽𝛼𝑡𝑖

−𝛼], 

𝑤4𝑖(𝛼, 𝛽) = [ (−𝛼𝛽𝛼−1𝑡𝑖
−𝛼 +

𝛼(𝛼−1)

𝛽
) (1 − exp(−𝛽𝛼𝑡𝑖

−𝛼)) −

𝛼𝛽𝛼−1 exp(−𝛽𝛼𝑡𝑖
−𝛼) 𝑡𝑖

−𝛼] and   

𝑤5𝑖(𝛼, 𝛽) = [ (𝛼𝛽𝛼−1𝑡𝑖
−𝛼(𝑙𝑛𝛽 − 𝑙𝑛𝑡𝑖) +

1

𝛽
+

𝛼

𝛽
(𝑙𝑛𝛽 − 𝑙𝑛𝑡𝑖)) (1 − exp(−𝛽𝛼𝑡𝑖

−𝛼))

− 𝛼𝛽𝛼−1𝑡𝑖
−𝛼 exp(−𝛽𝛼𝑡𝑖

−𝛼) (𝑙𝑛𝛽 − 𝑙𝑛𝑡𝑖)]. 

According to particular regularity conditions, the two-sided 100(1 − γ)%,  

0 <  γ <  1, asymptotic confidence intervals for the parameters 𝛼, 𝛽 and 𝜆 

can be obtained as: 

α̂ ± Zγ/2√V̂11,         β̂ ± Zγ/2√V̂22,            λ̂ ± Zγ/2√V̂33. 

Where Zγ/2  is the upper (
γ

2
) th percentile of the standard normal 

distribution, V̂ii, i = 1,2,3 is the asymptotic variances 𝛼, 𝛽 and 𝜆, respectively. 

4.2 Bootstrap Confidence Intervals 

The bootstrap confidence intervals are approximate confidence interval 

but in general are better approximate than standard intervals. A parametric 

bootstrap interval provides much more information about the population 

value of the quantity of interest than does a point estimate. The parametric 

bootstrap methods are of two types:- 
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(i) Percentile bootstrap method (Boot-p) proposed by Efron (1993),  

(ii) Bootstrap-t method (Boot-t) proposed by Hall (1988).  

 

- Percentile Bootstrap (Boot-P) Confidence Interval  

The boot-p method is rather simple and constructs confidence 

intervals directly from the percentiles of the bootstrap distribution of the 

estimated parameters. It given by the following steps: 

I. A randomly censored sample is generated from the original 

data T = (𝑡1, 𝑡2 …𝑡𝑛) and the MLE 𝜃 of the parameter 𝜃 is 

computed. 

II. Again, an independent randomly censored bootstrap sample T∗ =

(𝑡1
∗, 𝑡2

∗ …𝑡𝑛
∗) is generated by using 𝜃. 

III. Now, compute the bootstrap MLE 𝜃∗ of parameter 𝜃 based on T∗, 

as in step-1. 

IV. Repeat steps 2-3, B times representing B bootstrap MLE’s 𝜃∗’s 

based on B different bootstrap samples, i=1, 2, … B. 

V. Arrange all 𝜃∗’s in an ascending order to obtain the bootstrap 

sample 

 i.e θ̂∗
(1) ≤ θ̂∗

(2) ≤ ⋯ ≤ θ̂∗
(B). An approximate 100(1 − ω)% 

boot-p confidence interval for θ is obtained by 

(𝜃∗
[(

𝜔

2
)×𝐵]

, 𝜃∗
[(1−

𝜔

2
)×𝐵]

). 

Where, 
𝜔

2
  is the quantity that helps to determine the bootstrap point.    

- Bootstrap-t (Boot-t) Confidence Intervals 

The bootstrap-t confidence interval is given by the following steps: 
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I. Steps 1 and 2 of boot-p and boot-t methods are the same. 

II. Compute the bootstrap-t statistic T∗ =
θ̂∗

b−�̂�

√v(θ̂∗
b)

 for θ̂∗
b where b = 

1,2,…B. 

III. To obtain a set of bootstrap statistics T∗
𝑖; i = 1,2, … , B repeat steps 

2-3, B times.  

IV. Let T∗
(1) ≤ T∗

(2) ≤ ⋯ ≤ T∗
(B)be the ordered values of T∗

i; i =

1,2, … , B. 

V. Now, the approximate 100(1 − ω)% boot-t confidence interval for 

parameter θ is obtained by 

(𝜃 − �̂�∗
[(1−

𝜔
2

)×𝐵]
√𝑉(𝜃), 𝜃 − �̂�∗

[(
𝜔
2

)×𝐵]
√𝑉(𝜃)) 

5. Simulation Study  

A simulation study was carried to check the performance of the 

accuracy of point and interval estimates for several cases, of which 

estimates three parameters of IW distribution and exponential distribution ( 

𝛼 , 𝛽 and 𝜆) for replications m=1000, for different sample size (n) as  

n=35,50,80,100,150 and different parameters values. All computations are 

obtained based on the R language. 

Also, for the generation of actual observed time t from IW 

distribution and exponential distribution, we use the inversion method 

which is given by: 
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1. Random number Generation for lifetime (X) from IW 

distribution 

U = F(X). 

By substituting F(x) in (2), we get 

u = exp (−(
𝑥

𝛽
)
−𝛼

). 

Where, u is distributed as U (0, 1). 

Hence, 

𝑥 = (−
𝛽𝛼

log(𝑢)
)

1

𝛼
 .                                                          (10)   

2. Random number Generation for censoring times (C) from 

exponential distribution  

U = G(C). 

By substituting G(C) in (4), we get 

u = 1 − exp(𝜆𝑐). 

Where, u is generated from U (0, 1). 

Hence, 

𝑐 = −
ln(1−𝑢)

𝜆
.                                                      (11)   

The following steps were followed to obtain the results: 

I. Specify initial values for parameters 𝛼 , 𝛽 and 𝜆. as (0.9,1,0.3), 

(2.5,4.2,0.1) and (1.9,2,0.3) 

II. Specify the sample size n. as n=35,50,80,100,150, 

III. Generate m times (m=1000) of random samples of (X, C) from 

the model in equations (10) and (11),  

IV. Determine the observed unites (t) which is the minimum of (X, 

C) and the indicator variable (𝛿) from the model (3),    

V. Obtain the maximum likelihood estimates (MLEs), 
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VI. Obtain the mean, bias, mean squared error (MSE), asymptotic 

and bootstrap confidence intervals (CI's) for the unknown 

parameters, average interval lengths (AILs) and coverage 

probability (CP) for the different sample size, 

VII. We assumed the lifetimes and the censoring times have the 

same sample size.  

 

Discussion on simulation study 
All the calculations were performed using the statistical R software. 

The main results of the simulation study are listed in Tables 1-3 with the 

following remarks. 

 As expected, it is noted that the bias decreases as the sample size 

increases. 

  The coverage probabilities for the unknown parameters are closed 

to 95%. 

 The average length of confidence intervals decreases when sample 

size increases.  

 Estimates obtained by maximum likelihood estimation are almost 

unbiased. 

 Average Length of confidence intervals based on maximum 

likelihood estimation method increases as the parametric values 

increases. 

 Bootstrap (t - p) confidence intervals in most cases better than the 

asymptotic confidence intervals. 
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6. Application to Real Data  

In this section we analyze a real data set which consists of the survival 

times for 50 patients with advanced acute myelogenous leukemia reported to 

the international bone marrow transplant registry. The following data from 

Ghitany and Alawadhy (2002).  

The leukemia free-survival times (in months) for the 50 patients (*) 

indicates the censored observations (exponential distribution), the data set is 

given as: 

0.030, 0.493, 0.855, 1.184, 1.283, 1.480, 1.776, 2.138, 2.500, 

2.763, 2.993, 3.224, 3.421, 4.178, 4.441*, 5.691, 5.855*, 6.941*, 

6.941, 7.993*, 8.882, 8.882, 9.145*, 11.480, 11.513, 12.105*, 12.796, 

12.993*, 13.849*, 16.612*, 17.138*, 20.066, 20.329*, 22.368*, 

26.776*, 28.717*, 28.717*, 32.928*, 33.783*, 34.221*, 34.770*, 

39.539*, 41.118*, 45.033*, 46.053*, 46.941*, 48.289*, 57.401*, 

58.322*, 60.625* 

Now, first of all, we fit the data to IW and exponential distributions. 

Maximum likelihood estimation methods are applied for estimating the 

models unknown parameters. The kolmogorov- smirnov (k-s) test is used 

for this purpose. With the following hypothesis:  

H0: the data come from the distribution. 

H1: the data does not come from the distribution. 
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Table 2: the values of goodness of fit test 

Distribution 
k-s 

D-statistics p- value 

IW 0.2092 0.2907 

Exponential* 0.17377 0.3664 

Note: (*) indicates the censoring times distribution 

We note that distance (D) value of k-s test (0.2092, 0.17377) is less than the 

p – value (0.2907, 0.3664). Therefore the null hypothesis does not rejected, 

this is lifetime data and censoring time data came from the IW Distribution 

and exponential distribution respectively. 

 
Figure 3: Empirical distribution and cdf for myelogenous data 

  

Table 3: The Estimates of The Parameters from The Real Data Set 

Parameters MLE’s 

Confidence intervals 

AILs 

(Asy CI) 

AILs 

(Boot (p)) 

AILs 

(Boot (t)) 

�̂� 0.310 
0.15706 

(0.2299,0.3869) 

0.2568 

(0.2633,0.5201) 

0.18289 

(0.18331,0.3662) 

�̂� 13.349 
41.92328 

(4.8825,46.806) 

9.15286 

(7.97908,17.13194) 

18.54920 

(9.23039,27.77959) 

�̂� 0.030 
0.02245 

(0.0203,0.0428) 

0.01121 

(0.01985,0.03106) 

0.01489 

(0.02932,0.04421) 

Note: AILs- Average interval lengths  
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Table 1: Average estimated values, MSEs, bias, asymptotic CI and bootstrap (t-p) intervals 

of IW distribution parameters under random censoring. 

N 

𝛼0 = 0.9, 𝛽0 = 1, 𝜆0 = 0.3 

 

 
Mean 

(MSEs) 
Bias 

AILs 
(Asymptotic CI) 

AILs 
(Boot – P) 

AILs 
(Boot – t) 

CP 

 α̂ 
0.94790 

(0.03288) 
0.04790 

0.74361 

(0.65118,1.39479) 

0.72342 

(0.65279,1.37621) 

0.70080 

(0.64715,1.34795) 
93.7 

35 β̂ 
1.05343 

(0.06577) 
0.05343 

1.09928 

(0.69392,1.79320) 

0.96978 

(0.68402,1.65379) 

1.18134 

(0.69931,1.88065) 
96.1 

 λ̂ 
0.31437 

(0.00632) 
0.01437 

0.31191 
(0.17970,0.49161) 

0.31096 
(0.18021,0.49118) 

0.30667 
(0.18567,0.49234) 

94.9 

 α̂ 
0.92921 

(0.01930) 
0.02921 

0.52475 

(0.68349,1.20824) 

0.52652 

(0.70633,1.23285) 

0.50844 

(0.69364,1.20208) 
95.6 

50 β̂ 
1.02292 

(0.03796) 
0.02292 

0.83492 

(0.72141,1.55632) 

0.75340 

(0.70230,1.45570) 

0.86426 

(0.72676,1.59102) 
95.9 

 λ̂ 
0.30850 

(0.00454) 
0.00850 

0.25521 

(0.19842,0.45364) 

0.25198 

(0.19589,0.44787) 

0.25125 

(0.20334,0.45459) 
94.8 

 α̂ 
0.92216 

(0.01277) 
0.02216 

0.42972 

(0.72737,1.15709) 

0.42464 

(0.72043,1.14507) 

0.43535 

(0.73611,1.17145) 
94.3 

80 β̂ 
1.01803 

(0.02473) 
0.01803 

0.62794 

(0.77167,1.39961) 

0.59693 

(0.75502,1.35195) 

0.62928 

(0.77827,1.40755) 
94.7 

 λ̂ 
0.30214 

(0.00272) 
0.00214 

0.21789 

(0.21398,0.43187) 

0.20450 

(0.21075,0.41526) 

0.21248 

(0.21288,0.42536) 
94.3 

 α̂ 
0.9189 

(0.0091) 
0.0189 

0.3645 
(0.7445,1.1090) 

0.3689 
(0.7462,1.1151) 

0.3722 
(0.7433,1.1155) 

97.9 

100 β̂ 
1.0133 

(0.0185) 
0.0133 

0.5500 

(0.7907,1.3407) 

0.5289 

(0.7872,1.3161) 

0.5584 

(0.8011,1.3596) 
97.2 

 λ̂ 
0.3038 

(0.0019) 
0.0038 

0.1777 

(0.2237,0.4013) 

0.1736 

(0.2262,0.3997) 

0.1778 

(0.2273,0.4051) 
98.4 

 α̂ 
0.9108 

(0.0061) 
0.0108 

0.2953 
(0.7684,1.0637) 

0.3100 
(0.7611,1.0710) 

0.3129 
(0.7692,1.0822) 

96.9 

150 β̂ 
1.0082 

(0.0119) 
0.0082 

0.4410 

(0.8218,1.2628) 

0.4316 

(0.8223,1.2539) 

0.4400 

(0.8303,1.2703) 
97.6 

 λ̂ 
0.3031 

(0.0014) 
0.0031 

0.1444 

(0.2366,0.3810) 

0.1458 

(0.2368,0.3826) 

0.1482 

(0.2366,0.3849) 
97.6 
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Table 2: Average estimated values, MSEs, bias, asymptotic CI and bootstrap (t-p) intervals 

of IW distribution parameters under random censoring. 

N  

𝛼0 = 1.9, 𝛽0 = 2, 𝜆0 = 0.3 

 
Mean 

(MSE) 
Bias 

AILs 
(Asymptotic CI) 

AILs 
(Boot – P) 

AILs 
(Boot – t) 

CP 

35 

α̂ 
2.02536 

(0.19022) 
0.12536 

1.65466 

(1.31007,2.96473) 

1.64869 

(1.36025,3.00894) 

1.61649 

(1.34669,2.96318) 
94.1 

β̂ 
2.04718 

(0.07417) 
0.04718 

1.08706 

(1.64006,2.72712) 

1.06026 

(1.61756,2.67782) 

1.08049 

(1.62524,2.70573) 
94.4 

λ̂ 
0.30826 

(0.00534) 
0.00826 

0.30573 
(0.19154,0.49727) 

0.28661 
(0.18275,0.46936) 

0.30457 
(0.18739,0.49196) 

93.7 

50 

α̂ 
1.97927 

(0.12390) 
0.07927 

1.35490 

(1.40493,2.75983) 

1.33240 

(1.39188,2.72428) 

1.34836 

(1.40012,2.74849) 
93.3 

β̂ 
2.02632 

(0.04860) 
0.02632 

0.87077 

(1.68010,2.55087) 

0.87583 

(1.66530,2.54113) 

0.87448 

(1.68557,2.56005) 
95 

λ̂ 
0.30704 

(0.00339) 
0.00704 

0.22824 
(0.20700,0.43524) 

0.22962 
(0.19909,0.42870) 

0.22224 
(0.21158,0.43381) 

94.5 

80 

α̂ 
1.95728 

(0.06260) 
0.05728 

0.95979 

(1.50538,2.46517) 

0.93992 

(1.54985,2.48976) 

0.95376 

(1.51810,2.47187) 
95.8 

β̂ 
2.01650 

(0.02662) 
0.01650 

0.65128 

(1.74052,2.39181) 

0.65199 

(1.73098,2.38297) 

0.66205 

(1.73716,2.39921) 
94.9 

λ̂ 
0.29947 

(0.00206) 
0.00053 

0.17707 
(0.21965,0.39672) 

0.17585 
(0.21839,0.39424) 

0.17675 
(0.22395,0.40070) 

95.1 

10

0 

α̂ 
1.9471 

(0.0532) 
0.0471 

0.8545 

(1.5419,2.3964) 

0.8842 

(1.5548,2.4389) 

0.8773 

(1.5434,2.4206) 
98 

β̂ 
2.0139 

(0.0213) 
0.0139 

0.5774 

(1.7645,2.3419) 

0.5583 

(1.7698,2.3281) 

0.5757 

(1.7600,2.3357) 
97.9 

λ̂ 
0.3009 

(0.0015) 
0.0009 

0.1588 

(0.2284,0.3872) 

0.1507 

(0.2309,0.3816) 

0.1505 

(0.2338,0.3842) 
98.2 

15

0 

 
1.9268 

(0.0313) 
0.0268 

0.6901 

(1.5961,2.2861) 

0.6875 

(1.6034,2.2909) 

0.6964 

(1.6101,2.3065) 
97.9 

 
2.0090 

(0.0147) 
0.0090 

0.4669 

(1.8014,2.2683) 

0.4651 

(1.7989,2.2640) 

0.4691 

(1.8089,2.2780) 
97.1 

 
0.3020 

(0.0012) 
0.0020 

0.1299 

(0.2417,0.3716) 

0.1309 

(0.2414,0.3723) 

0.1347 

(0.2409,0.3756) 
97.4 
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Table 3: Average estimated values, MSEs, bias, asymptotic CI and bootstrap (t-p) intervals 

of IW distribution parameters under random censoring. 

N 

𝛼0 = 2.5, 𝛽0 = 4.2, 𝜆0 = 0.1 

 
Mean 

(MSE) 
Bias 

AILs 
(Asymptotic CI) 

AILs 
(Boot – P) 

AILs 
(Boot – t) 

CP 

35 

α̂ 
2.65510 

(0.26750) 
0.15510 

1.78608 

(1.83826,3.62434) 

1.93140 

(1.87544,3.80684) 

1.94488 

(1.81088,3.75576) 
94.1 

β̂ 
4.25094 

(0.13266) 
0.05094 

1.49657 

(3.62421,5.12077) 

1.38348 

(3.63183,5.01531) 

1.49952 

(3.64612,5.14564) 
96 

λ̂ 
0.10210 

(0.00074) 
0.00210 

0.10373 
(0.05896,0.16269) 

0.10282 
(0.05670,0.15952) 

0.10980 
(0.05997,0.16977) 

94.2 

50 

α̂ 
2.61835 

(0.16593) 
0.11835 

1.46457 

(1.93702,3.40159) 

1.55639 

(1.94677,3.50317) 

1.55573 

(1.94150,3.49723) 
94.1 

β̂ 
4.22636 

(0.10778) 
0.02636 

1.21773 

(3.69861,4.91634) 

1.25540 

(3.68101,4.93641) 

1.30818 

(3.67026,4.97843) 
94.4 

λ̂ 
0.10170 

(0.00050) 
0.00170 

0.08660 
(0.06452,0.15113) 

0.08712 
(0.06278,0.14990) 

0.09018 
(0.06441,0.15459) 

94.6 

80 

α̂ 
2.56399 

(0.09385) 
0.06399 

1.13037 

(2.02922,3.15959) 

1.21068 

(2.01232,3.22300) 

1.20999 

(2.03665,3.24664) 
93.3 

β̂ 
4.22032 

(0.05853) 
0.02032 

0.95190 

(3.79430,4.74620) 

0.95416 

(3.79915,4.75331) 

0.97335 

(3.78866,4.76201) 
95 

λ̂ 
0.10126 

(0.00029) 
0.00126 

0.06805 
(0.07104,0.13909) 

0.06670 
(0.06944,0.13614) 

0.06964 
(0.07216,0.14179) 

95 

100 

α̂ 
2.5446 

(0.0744) 
0.0446 

1.0002 

(2.0683,3.0685) 

1.0949 

(2.0670,3.1620) 

1.0698 

(2.0476,3.1175) 
97.5 

β̂ 
4.2255 

(0.0495) 
0.0255 

0.8503 

(3.8399,4.6902) 

0.8631 

(3.8307,4.6938) 

0.9292 

(3.8201,4.7493) 
97.3 

λ̂ 
0.1005 

(0.0003) 
0.0005 

0.0605 

(0.0733,0.1338) 

0.0636 

(0.0721,0.1357) 

0.0660 

(0.0715,0.1374) 
96.6 

150 

α̂ 
2.5343 

(0.0444) 
0.0343 

0.8107 

(2.1445,2.9552) 

0.8008 

(2.1650,2.9659) 

0.8032 

(2.1511,2.9543) 
98.1 

β̂ 
4.2043 

(0.0323) 
0.0043 

0.6843 

(3.8879,4.5722) 

0.6980 

(3.8823,4.5803) 

0.6987 

(3.8873,4.5860) 
97.1 

λ̂ 
0.1007 

(0.0002) 
0.0007 

0.0496 

(0.0780,0.1275) 

0.0498 

(0.0771,0.1269) 

0.0508 

(0.0782,0.1290) 
96.7 

 


